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On the creation of a stable and convex static meniscus,
appropriate for the growth of a single crystal rod with
specified constant radius
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In this paper a theoretical procedure for the creation of a stable static meniscus, appropriate for the growth of a single
crystal rod, with a priori specified size (upper radius) and shape (convex), is presented. The method is based on explicit
formulas, established as mathematical theorems and combine them for locate the controllable part p of the pressure
difference across the free surface in order to create a stable static meniscus with a priori specified size and shape. In fact it
consists in a set of calculus which leads to the determination of the melt column height between the shaper top level and
the crucible melt level in function of the pressure of the gas flow (introduced in the furnace for release the heat) in order to
obtain the desired meniscus. The procedure is presented in general and is numerically illustrated. The numerical illustration
reveals situation when convex meniscus can not be created, only convex-concave meniscus exists, which is appropriate for
the growth. The novelty is that for the second order axi-symmetric Young-Laplace equation three boundary conditions are
specified (instead of two) and that value p of the controllable part of the pressure difference is found for which the boundary

conditions are satisfied.
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1. Introduction

Up until 1993-1994 information concerning the
dependence of the meniscus free surface shape and size on
the controllable part of the pressure difference across the
free surface, in the growth of single crystal rod by edge-
defined film-fed growth (E.F.G.) technique, is summarized
in [1]. According to [1], there is no complete analysis of
the solution of the general equation describing the
meniscus free surface. For the general equation only
numerical integrations were carried out for a number of
process parameter values that are of practical interest.

In [2] the authors investigate the influence of the
controllable part of the pressure difference across the free
surface on the size and shape of the meniscus free surface
for rods, in the case of middle-range Bond numbers (i.e.
By =1) which most frequently occurs in practice and has
been left out of the regular study in [1]. A numerical
approach is used in order to solve the meniscus surface
equation written in terms of the arc length of the curve.
The stability of the static meniscus free surface is analyzed
by means of the Jacobi equation. The conclusion is that a
large number of static menisci having drop-like shapes are
unstable.

The authors of papers [3], [4] consider automated
crystal growth processes based on weight sensors and
computers. An expression for the weight of the meniscus,
contacted with crystal and shaper of arbitrary shape, in
which there are terms related to the hydrodynamic

pressure (the pressure under the crystallization front), is
given

In [5] the author shows that the hydrodynamic
pressure is too small to be considered in the automated
crystal growth. In [6] theoretical and numerical study of
meniscus shape under symmetric and asymmetric
configuration is undertaken. A meniscus dynamics model
is developed to consider meniscus shape and its dynamics,
heat and mass transfer around the die-top and meniscus,
interaction of solidification with meniscus and tube
thickness variation. The parametric studies are conducted
to reveal the correlations among tube thickness, effective
height, pull rate, die top temperature and crystal
environmental temperature.

Finally, in [7] the general axisymmetric Young-
Laplace equation is considered for the boundary

conditions: 2(r,)=0; z'(r,) = —tana, z‘(r|)=—tan(%—ag)

when 0 <, < % —a, < % . BExplicit formulas are

established prescribing the boundaries of the ranges where
the parameter P has to be chosen, or can be chosen, in

order to obtain a stable, convex solution.

In the present paper it is shown in which kind the
inequalities proved in [6] have to be combined and used
for the determination of the melt column height between
the shaper top level and the horizontal crucible melt level
in function of the pressure of the gas flow introduced in
the furnace for release the heat, in order to obtain a stable
static meniscus, having a convex free surface, appropriate
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for the growth of a rod with an a priori given constant
radius I} . Appropriate means, that at the left end of the free
surface, the angle between the tangent to the free surface
and the vertical is equal to the growth anglec,, i.e.

0
2'(n) = —tan(%—ag).

The thermal problem concerning the setting of the
thermal conditions which assure that for the obtained
meniscus at the point (I,,Z(I;)) the solidification
conditions are satisfied is not considered in this paper.

2. The free surface equation

For the single crystal rod growth by E.F.G. method, in
hydrostatic approximation the free surface of the static
meniscus is described by the Laplace-Young capillary
equation [8]:

1 1
|=—+—1|=p-g-z- 2.1
/4 (Rl sz r-9 p 2.0

Here: y is the melt surface tension; p denotes the melt
density; g is the gravity acceleration; 1/R;, 1/R, denote the
main normal curvatures at a point M of the free surface; z
is the coordinate of M with respect to the Oz axis, directed
vertically upwards; p is the controllable part of the
pressure difference across the free surface:

P=Pn—Pg—p-g-H. (22)

In the last formula: [, denotes the hydrodynamic

pressure in the meniscus melt under the free surface and is
due to the thermal convection created by the thermal
gradients but usually it is accepted to be equal to zero;

Py 2 0 denotes the gas pressure of the gas flow (on the

free surface), introduced in the furnace in order to release

the heat from the rod wall and free surface; H denotes
the melt column height between the horizontal crucible

melt level and the shaper top level (see Fig.1). H is
positive when the crucible melt level is under the shaper

top level and H is negative, when the shaper top level is

under the crucible melt level. When H is positive, then

the hydrostatic pressure 0+ Q- H acts in the same

direction as the hydrostatic pressure p-Q-Z and when

H is negative , then p-g-H acts in the opposite

direction as p-Q-Z. The pressure difference, which

appears in  the  Young-Laplace equation is:

Ap=py=[p,=(prg-z+p g-H)l=p-g-z+p,+p-g-H-p,
=p-g-z=[p,—p,—p-g-H]=p-g-2-p

P is called the controllable part of the pressure difference,
because when P, is negligible, then P is controllable by

H and by the pressure difference of the gas at the
entrance and at the exit of the furnace.
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Fig. 1.Axisymmetric meniscus geometry in the rod growth by
E.F.G. method.

To calculate the meniscus free surface shape and size is

convenient to employ the Laplace-Young equation (2.1) in
its differential form [8].

[1+(zy)z]- Zy—22,2,°2,, +[1+(zx)2]~zyy =

pe7— 23)
=L@ + (e, ]
v
For the growth of a single crystal rod of

radius I, 0 < I} < Iy, the differential equation (2.3) of the

axi-symmetric meniscus free surface is given by the
formula:

z"=—p'g;_ p[1+(z')2]% —%-[H(z')z]-z'

for O0<r<r<r, (2.4)

which is the Euler equation for the energy functional of the
melt column:

I(z):j{y-[1+(z')2]%+;p-g-zz— p~z}-r-dr

2.5)
z2(r)=h>0, z(r,)=0

The meniscus is appropriate for the growth of a rod of

constant radius I}  if the solution Z = Z(I’) of the
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eq.(2.4), describing the meniscus free surface, satisfy the
following conditions:

2.6)

b. 2'(r,)=—tana,

c. Z(I’O)Z 0 and Z(I’) is strictly decreasing on [I‘l, I’o],
where I, >0 is the shaper radius, agy is the growth

angle, &, is the contact angle between the meniscus free

surface and the edge of the
0<a, < % —a, (Fig.1).
Comments: Condition a. expresses that at the point

(r;, z(r,)) (left end of the free surface where the thermal

conditions for solidification have to be assured) the angle
between the tangent line to the free surface and the

shaper top and

vertical is equal to the growth angle ¢, i.e. the tangent to

the crystal wall is vertical.
Condition b. expresses that at the point (I,,0) (the

right end of the free surface) the angle between the tangent
line to the free surface and the shaper top, i.e. contact
angle, is equal to o, .

Condition c. expresses that the right end of the free
surface is fixed to the outer edge of the shaper.
Usually, eq. (2.4) is transformed into the system:

dz

—=—-tana

dr (2.7)
da _p-pgz 1 1.

dr ¥ cosa r

for which the conditions a. — ¢. become:

2(r,) = 0; a(r,) = s (r) = 75 — g 2(1) s
strictly decreasing on [I’l, I’O]. (2.8)

3. The dependence of the meniscus shape
and size on the controllable part of the
pressure difference across the free surface

If for a certain value of the controllable part of the
pressure difference [, the solution Z(I’) of eq.(2.4),

which satisfies Z(I;) =0 and Z'(r))=—taneg, is
globally concave ( Z"(I’) < 0), then Z(I’) can not satisfy a

condition of the type Z'(l)= —tan(% - ag) when

I, €(0,r,). Hence a static meniscus having such a free
surface is not appropriate for the growth of a rod with
constant radius I;. Therefore, the interest is to find the
values of the pressure [ for which there exists a solution

Z(I’) of eq.(2.4) which
z(r,)=0;2z'(r,) =—tana, and z(I) is not globally

concave.

Based on the mathematical theorems rigorously
established in [6], the following statements can be
formulated regarding the creation of an appropriate
meniscus.

Statement 1. If there exists a solution Z(I’)of the
eq.(2.3) which satisfies z(r,)=0; z'(r,) = —tanc,
and Z(r)is globally convex (2"(r)>0), then for the
pressure P the following inequality holds:

satisfies

L —\a, +a
—L~}/~M-cosac+l-sinac£p
n-1 r, T
/)

n A (%*ag) . n-1 .
£—m~;/-r70‘smag+T~p‘g~r0~tan(é—ag)
+n-1<cosag

r()

(3.1)
r
here N=-">1 .
i

Comments: According to this statement, in order to
create an appropriate static meniscus having a convex free

surface on [ro/ ro}, the pressure P has to be chosen in
n 9

the range given by the inequality (3.1). Formula (3.1) can
be used for a rough evaluation of the pressure P which

has to be realized when the rod radius I} which has to be
. r
grown is given by  _ % .
A consequence of the Statement 1 is: if for an
appropriate static meniscus having a convex free surface,
I, is close to zero, then P verifies:

> %_(ac+ag) Y

p=z-y- 45— -cosa, +—-sine, (3.2)
r, I

Formula (3.2) can be used for a rough evaluation of
the pressure P, which has to be realized, when the rod
radius I (which has to be grown) is close to zero.

Statement 2. If the pressure P satisfies:

T/ _
n 2 (ac+ag) Vo
p<——— y - LE—————cosqa, +-sina,
n-1 Iy I'O

(3.3)
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then there exists | e[r"/ r} and a solution Z(I)of
1 n’>o

eq.(2.4), which satisfies (2.6) and 2"(r)>0.

Comments: According to the above statement, if the
pressure P is chosen such that inequality (3.3) holds, then

an appropriate static meniscus, having a convex free

.. I .
surface on a certain interval [I’l, ro], % < <K, is

obtained. This meniscus is appropriate for the growth of a
rod of radius I;.

Formula (3.3) can be used for the evaluation of
the pressure P which has to be realized when the rod

radius I} (which has to be grown) has to be in the range

VAl

n o Thm@tay)
.y.i.s
-1 r,

A consequence of the Statement 2 is that if for P
the following inequality holds:

7)o, +a,) p

-cosq, +-sina, , (34)
r() rO

p<-y-

then there exists Iin the range (O, I’O) and a static

meniscus having globally convex free surface on

[I,, I, ] which is appropriate for the growth of a rod of
constant radius I} .

Statement 3. If for N>N">1 and P the following
inequalities hold:

. 1 /4
- ina, + -p-g-r -tanl”, —a |+ Nn"““=—-cosa, <
B g pP-9-h (A g) r g (3.5)
/) _
n (o, +ay) )
<p<- -;/-A g -cosac+1~smac,
n-1 r, r,

then there exists r; in the interval [i’ &} and a solution
n'n'

Z() of the eq. (2.4) which satisfies (2.6) and 2"(r) >0

on [I’l, ro].

Comment: Formula (3.5) can be used for the evaluation of

the pressure P, which has to be realized, when the rod

radius I} (which has to be grown) has to be in the range

L K
L,
nn

Statement 4. If P satisfies:

p<ZL sing, (3.6)

o

then a solution Z(I) of the eq.(2.4) which satisfies
z(r,)=0;2z'(r,) =—tana, is globally convex, i.e.
2"(r) >0, and vice versa.

Comment: Formula (3.6) can be used for the evaluation of
the pressure P for which the meniscus free surface is

globally condition

z'(r,) = —tan (% —-a, ) can be realized (i.e. the

convex and potentially the

meniscus can be appropriate).

7o
p>*-sina,

o
r, 0<r<r, (rl:ro/.n>1) and a solution Z(I') of the
2 n 2

Statement 5. If for there exists

eq.(2.4) which satisfies (2.6), then for P the following
inequalities hold:

. n-1
Z'smocc< ps~p-g-r0'tan[”—agj+n'7/~cosag
r, n 2 r,

3.7)

Comment: Formula (3.7) is useful for the evaluation of the
pressure P, which has to be realized, for create an

appropriate meniscus having non globally convex
(convex-concave) free surface.
Statement 6. If for N >1and P the following inequality

holds:

n-1 4
p>——-p-g-I,-tane, +N-— (3.8)

n r,
then the solution Z(I)of the eq.(2.4) which satisfies
z(r,) =0; z'(r,) = —tana, is concave (z”(r) < O)

on [%’ ro} and the conditions Z'(I‘l):—tan(%—ag),

Z(r) is strictly decreasing on [% ,ro} can not be realized

onit.
Comment: Formula (3.8) is useful for a rough
evaluation of the P values for which the meniscus is not

appropriate for the growth of a rod of radius % .
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Statement 7. If a solution Z(I)of eq.(2.4) which

satisfies (2.6), is globally convex (z"(r)>0), then Z(I)
is minimum of the energy functional of the melt column.

Comment: The above statement establishes that if the
appropriate meniscus free surface is convex, then the static
meniscus is stable.

4. Creation of an appropriate static meniscus
by the choice of the melt column height
In this sequence first it will be shown theoretically in

which kind the explicit formulas, presented in the previous
sequence, can be combined and used for the determination

1

Il(n):n;-p-g-ro-tan
n

of the pressure P, (which has to be used) for the creation
of a stable and convex static meniscus, appropriate for the
growth of a single crystal rod when o, Ay, P55 1o
are given a priori. After that, it will be shown in which
kind the melt column height (which has to be used) has to
be found, when the pressure of the gas flow, introduced in

the furnace to release the heat, is given.
In order to find the pressure P, which has to be used for

the creation of a convex meniscus, having the bottom
radius equal to I, and the top radius equal to I}, the

following limits, presented in the above section, have be
considered:

(%—ag )+¥-cosag

0

_ 7, -\, + _
L(n):—nrll-y-é (Zc ag)-sinag+n-p-g-ro-tan(%—ag)+n-:;~cosag
n r
I =7
=1 sina
T, —\a, +a
Iz‘z—;/-Lcg)~cos05C+l~sin05C
r-O r-O
s —\a, +a
L(n)=- n ~;/~A (c g)~cos05c+1~sinozc.
n-1 r, r,

e According to Statement 1, for an appropriate static and
convex meniscus, [P has to be searched in the range:

lL(n,). L)), where n, = %

e From this range the following [P values have to be
excluded:

- the values of P higher than I,(n,).
(That is because according to Statement 6 for such values
of P the free surface is concave on [I’l, I’o] and is not
appropriate for the growth.)

- the values of P higher than |, . (That is
because according to Satement 4 for these values of P the
free surface is concave at I; and it is not anymore
globally-convex.)

- the values of P less than |, when the
obtained upper radius I' of the meniscus for P, = | 4 18
higher than the desired radius I} , and the values of P
higher than | 4 When the obtained upper radius I' of the

meniscus for P, =1, is less than the desired radius I;,

respectively.(That is according to the Statement 3 and
comments following Statement 1.)
* Excluding the above mentioned values of P, a part

P of the range [L(n1 ), L(nl)] is obtained, where the
values of P have to be searched.

* In order to obtain the right value of P, the initial value
problem (2.6), (2.7) has to be integrated numerically for
different values of Pin P and the obtained upper radii of
P . The right
value of P can be seen on this graphic. Using this right

the menisci have to be represented versus

value of P, the melt column “height”, which has to be

H

used is given by:

—L-[p—i— Py, where
pa

Py > 0 is the pressure of the gas flow.

In the following the above described general procedure
will be illustrated for a melt having thermo-physical
properties similar to NdYAG melt:

a, =0.523 rad =30"; @, =0.2967rad =17";
p=36x10°kg/m*; y=781x10"N/m;g=9.81m/s’.
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The calculus was performed in MathCAD V.13. using
r =5%x107°m; for:

n=4x10"m; r=25x10"m and
r=0.55x 107 m | respectively.

In Fig.2 the considered limits are represented for
nell, 10].
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Fig. 2. The possible P ranges which have to be
investigated for n =1.25; 2; 9.

When T, =2.5%107m, then N, =2 and for an
appropriate static and stable meniscus, P has to be

searched in the range:
L), L2)|=[-124.942, 518.985]Pa.

From this range the values P

1,(2) =363.374Pa have to be excluded. Hence, the
range where P has to be searched is: [-124.942, 363.374]

Pa.
From this

greater than

range the values of P higher than
1,(2) =78.1Pa have to be excluded too. Hence, the
range where [ has to be searched becomes: [-124.942,
78.1] Pa.

We have to search now for p =1, =-23.432Pa the
point I e (0, ro] at which z'(r)=—tan (% —a, )
This can be made integrating numerically the system (2.5)
for p=-23.432Pa and z(r,) =0, a(r,) = a, The
result of this integration is represented on Fig. 3.

0.003 , 15
12 -
0.002 - =
E g oo .
B =
06 - ]
0001 - -
03 -
1] ] 0 |
0.003 0Do04 0003 0oos 0004 0005
r [m] r [m]

Fig. 3. The result of the integration of system (2.5) for
p =-23.432Pa and z(r,) =0, a(r,) = @, -

obtained radius is
r=3.1043x107 m and is higher than the desired

Since the

value I, =2.5%107° M, we have to search the value of

P in the range [— 23.432, 78.1] Pa. The crystal radii
obtained by integration of (2.6), (2.7) for different P in
the range [-23.432, 78.1] Pa are represented in Fig.4.

popEs rrrrrrrrr 111111 1T 171
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T (p)
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s — - — == — — —

I
|
I
I
0002 - |
|
I
I

e A Sy
-20 -10 1] w20 30 40 0 60 WD 20

p [Fal
Fig. 4. The crystal radius versus ] for

p e[-23.432,78.1]Pa.

This figure shows that the desired rod radius
r,=25x10"m is obtainable for p=237.7Pa.

Hence, the right value of P is equal to 37.7 Pa.
Consider now the right value of P equal to

p, =37.7Pa  for whichf, =2.5%x107m . Since
Pp=Pn—Pyg—p-9-H and
P =0, it follows that 37.7Pa=-p, —p-g-H.

according to [5]
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Assuming now that the pressure of the gas flow introduced

0003 T T
in the furnace for the heat extraction is Py = 0, it is p =150[Pa)
found that H is equal to
1 0.002 - =
H=—. [—37.7 Pa-— pg] . Hence the melt column = p =80[Pz]
P9 =,
height between the top of the shaper and the crucible melt "
| — =170[Fa |
level has to be : —H:—-[37.7Pa+ pg]>0 '
RN p =200 [Pa]

with P, 20. It follows .

| | | |
p, =0=H =0.106cm; p, =800Pa= H =2.26¢ 0 0001 0002 0003 0004  Ooos
: r[m]
When I =4x 10°m (e. N=1.25), reasoning 15 I I I
analogously as in the case I} =2.5% 10 m , it is found
that the right p value in the range =
[-429.5, —23.432]Pa has to be searched and it is g 0o L
p=-215Pa. =
It follows:

p, =0=>-H=0.608cm; p, =800Pa— —H =2.87cm.

When I, =0.55x 10°m (e N=9) reasoning
analogously as in the case I = 2.5x 107 m, it is found
that the right P value has to be searched in the range
[-23.432, 78.1]1Pa . But we have already seen that for
P in this range there is not possible to create a convex
meniscus with I} =0.55x 107 m (see Fig.4). Only by
creating a meniscus with a convex-concave free surface is
possible to obtain I, = 0.55x 107 m (see Fig.5). More
exactly, using P =174 Pa we obtain a convex-concave

free surface with I, = 0.55x 10> m.
It follows:

p,=0=>-H=0492cm; p, =800Pa=—-H =2.75cm.
We remark that for ] in the range (78.1, 363.374) Pa

the results of the integration of the system (2.5) reveal the
existence of non globally convex (convex-concave) free
surfaces which are appropriate for the growth of a rod of

radius I, <2.5x 107 mand the existence of globally
concave free surfaces (for P >175Pa), which are not
appropriate for the growth (see Fig.5).

06 -

03

|

| |
o 0.0at ooz 0003 0004 00as

1]
t [m]

Fig. 5. Z and & infunction of I' for different values of P in

the range (78.1, 363.374) Pa.

5. Conclusions

The statements presented in sequence 4 for materials
for which o, + g < Z 5> can be used to determine the

values of the melt column height, in function of the
pressure of the gas flow, which have to be used in order to
obtain:

e stable convex static menisci, appropriate for the
growth of a rod with an a priori given constant radius

e static menisci which are not appropriate for the
growth of a rod with an a priori given constant radius.

The setting of the thermal conditions which assure the
solidification at the right places for the obtained convex
static menisci, is not discussed in this paper.
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